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Abstract

A new method for design and generation of spiral bevel gears of uniform tooth depth

with localized bearing contact and low level of transmission errors is considered.

The main features of the proposed approach are as follows:

(1) The localization of the bearing contact is achieved by the mismatch of the generating

surfaces. The bearing contact may be provided in the longitudinal direction, or in the

direction across the surface.

(2) The low level of transmission errors is achieved due to application of nonlinear relations

between the motions of the gear and the gear head-cutter. Such relations may be

provided by application of a CNC machine. The generation of the pinion is based on

application of linear relations between the motions of the tool and the pinion being

generated. The relations described above permit a parabolic function of transmission

errors to be obtained that is able to absorb almost linear functions caused by errors of

gear alignment.

A computer code has been written for the meshing and contact of the spiral bevel gears

with the proposed geometry. The effect of misalignment on the proposed geometry has also

been determined. Numerical examples for illustration of the proposed theory have been

provided.
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1 Introduction

The research project is directed at the design and generation of face-milled spiral bevel gears

with the following features:

(1) The depth of the teeth is uniform which means that the height of the teeth is constant.

(2) The gear tooth surfaces contact each other at every instant at a point. Thus, the

bearing contact is localized and therefore the sensitivity of the gears to misalignment

is reduced.

(3) The surface contac_ under the load is spread over an elliptical area, whose center is the

theoretical contact point. The set of instantaneous contact ellipses form the bearing

contact. The developed methods of synthesis provide two types of bearing contact that

may be directed: (i) in the longitudinal direction, or (ii) across the tooth surface.

(4) Two generating surfaces, Et and Ec, are used for the generation of the pinion and

the gear tooth surfaces E1 and E2, respectively. The dimensions of the instantaneous

contact ellipse depend on the load applied to the gear drive, and on the chosen relation

between the curvatures of the generating surfaces.

(5) Gear misalignment may cause transmission errors of a high level and of such a shape

that a high level of vibration will be resulted. The developed approach provides at each

cycle of meshing a predesigned parabolic function that will absorb the transmission

errors caused by misalignment. The cycle of meshing is determined as

2_-

¢_ = -_- (i)
ZVl
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where ¢1 and N1 are the angle of pinion rotation and the pinion tooth number.

2 Method for Generation of Conjugated Pinion-Gear

Tooth Surfaces

Kinematic Relations

We will consider initially an imaginary process for generation when the pinion and gear

tooth surfaces will be generated simultaneously. Such an approach will permit one to obtain:

(i) important kinematic relations to be executed on the CNC machine, and (ii) to visuahze

the possibility to obtain two kinds of the localized bearing contact. In reality, the pinion

and gear tooth surfaces are generated separately as it is discussed in the following sections.

We start with the case when the axes of the pinion and the gear form an angle of 90 °

(fig. 1). However, the developed approach is applicable for gear drives whose shaft angle

differs of 90 ° . The pinion and the gear during the process for generation perform rotation

about axes Xd_ and Xd2, respectively. Two rigidly connected generating surfaces, Et and _c,

perform rotation about the Zm axis. Surfaces Et and Ec generate the pinion and gear tooth

surfaces E1 and E2, respectively. The relation between the angular velocities w O) and w {c)

is represented by the equation

wCc}
-- = sin _1 (2)

where _1 is the pitch angle of the pinion. The transmission function of the gear drive

must be obtained for each cycle of meshing as the sum of the theoretical linear function and

the predesigned parabolic function as shown in fig. 2. We may represent the transmission

function at the first cycle of meshing by the equation
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N 1 _- 7r

Differentiating equation (3), we obtain that

(3)

gl

Taking into account (see equation (2)) that

(4)

we obtain that

¢1- ¢° (5)
sin 3'a

N1 ¢_- (,_ (6)¢2-N2sin'h a" ¢c )2

_C2) (N._ 2a¢c _= : )( ) (7)
sm 3'1

Considering ¢c and we as the input parameters, we may obtain w (1), ¢1, 42, and w (2)

using equations (2), (5), (6), and (7), respectively. Since ¢2(_.-) is a nonlinear function,

the generation of the gear requires application of a CNC machine for the execution of the

nonlinear function ¢2(¢_).

Note: The ratio of w (1) and w (0 (w (t) = w (_)) is constant during the process of pinion

generation, the instantaneous axis of rotation is directed along the X,_ axis, and the pinion

axode (in the process of meshing of the pinion tooth surface Zx with the generating surface

Et) is a circular cone with the pitch angle

N1 (8)
tan 3'1 - N_



The axode of the generating surface is the plane Z,_ = 0 that is tangent to the pinion

axode.

w(2) w(2)
The ratio of angular velocities w(----_,and 7 is not constant. Therefore, the e.xode of

gear 2 being in meshing with the pinion and the generating surface Ec is not a circular cone.

Generating Surfaces

It was mentioned above that two rigidly connected generating surfaces Et and Ec are

applied for the generation of the pinion and gear, respectively. Two pairs of surfaces E_ and

E¢ are applied to provide two types of bearing contact for the generated pinion and gear

tooth surfaces _1 and E2..

Case 1:

The two generating surfaces are a cone Et and a surface of revolution Y:c- The surfaces

are in tangency along a circle and are rigidly connected each to other in the process for

generation (fig. 3). Surfaces E_ and E2 are in line tangency along lines Lc 2 while being in

mesh in the process for generation. Similarly, Et and E1 are in line contact along lines Ltl

(not shown in fig. 3). However, instantaneous contact lines L_ 2 and Ltl do not coincide

each with other but are in tangency at a point that belongs to the circle L_t. This means

that surfaces _1 and E_ are in point contact at every instant that moves along the circular

arc L_t in the process of meshing. The path of contact Let (and the bearing contact) has a

longitudinal direction.

Case 2:

The generating surfaces _¢ and let are rigidly connected cones that are in tangency along

their common generatrix L_t (fig. 4). Only contact lines L¢2 between surfaces E_ and E2 are

shown in the figure. Each contact line Lc 2 and the respective line Ltl are in tangency at the

respective point of the generatrix L_t. This point is the current point of tangency of gear



tooth surfaces E1 and Z2.

The generating surfaces Et and Ec are the surfaces of two head-cutters that are applied

for the generation of the pinion and the gear, respectively. In reality, the head-cutters are

provided with straight line blades or with circular arc edge blades but not with surfaces. Such

blades are rotated about the head- cutter axes to form the generating surfaces. The angular

velocity of rotation of blades must provide the required velocity of cutting or grinding, but

is not related with the process for generation of the pinion or gear tooth surfaces.

The head-cutter is installed on the cradle of the cutting machine and then performs with

the cradle the rotation about the Z,, axis with the angular velocity w(c) = w(0. Details of

the settings of the head-cutter on the cradle are discussed in sections 3 and 4.

3 Generation of Gear Tooth. Surfaces

Applied Coordinate Systems and Machine-Tool Settings

We have considered in Section 2 an imaginary process of generation of conjugate pinion-

gear tooth surfaces based on the assumption that the surfaces will be generated simultane-

ously. In reality, the pinion-gear tooth surfaces are generated separately, as it was mentioned

above.

This section deals with gear generation and the applied machine-tool settings. The gear

tooth surfaces are generated by a head-cutter that is provided with straight-line blades (fig.

5). Both sides of the gear tooth are generated simultaneously. The blades are rotated about

the head-cutter axis. The edges of rotated blades form two circular cones as the generating

surfaces used for the manufacturing of the gear.

Henceforth, we will apply the movable coordinate systems Sc2 and $2 that are rigidty



connectedto the cradle and the gear, respectively (fig. 6). The fixed coordinate system S,_

is rigidly connected to the cutting machine. Coordinate system Sd2 is an additional fixed one

and is rigidly connected to the coordinate system S_. The orientation of S_ 2 with respect

to S,_ is determined by angle "}'2 = 7 -"yl, where "yl is the pitch angle of the pinion pitch

cone. During the process for generation, the cradle and the gear perform related rotations

about the X,_-axis and the X_2-axis, respectively. The current angles of rotation of the

cradle and the gear are designated by q_c2and _b2, that are related by equation (6) in which

we change the designation of _bc for _bc2. This relation provides the predesigned parabolic

function designated for the absorption of transmission errors caused by misalignment.

The installment of the head-cutter is shown in. fig. 7(a). Figure 7(a) shows the position

of the cradle when q_c2 = 0, and the coordinate system ,.q_ coincides with S,_. Coordinate

system S_ is an additional coordinate system that is rigidly connected to Sc2, and performs

rotation with S_2 as shown in fig. 7(b). Coordinate axes of S_ and Sc2 have the same

orientation. Axis Z_2 is the axis of the head-cutter (see below). The installment of the

head-cutter in Sc2 may be determined by the parameters of the triangle with the apexes

Oc2, Op2, and M, where M is the mean point of the cone distance of gear 2 (fig. 8). The

installment of the head- cutter in coordinate system Sc2 may be determined as well by Ha

and Va (fig. 8), where

Ha = A,, -/_2 sin/32 (9)

Va = R_2 cos/32 (10)

Here, R_2 = ]Op---_[ is the nominal radius of the head-cutter (fig. 8), Am = [O--'_[,

and/32 is the spiral angle of the gear. Alternative coupled parameters of installment, S,2 =

[O_O_[ and q2, Hc and Va, are related by the equations
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S_2 = (H_ % V_) °'5 (11)

q_ = tan_l( Va (12)

Equations of Gear Generating Surfaces

We have mentioned before that two cones as generating surfaces are used for cutting of

the space of the gear (fig. 5). Fig. 9(b) shows the cutting blade, and fig. 9(a) shows one

of the generating cones. The generating cone is formed by rotation of the blade edge about

the Zp2 axis. The equations of the cone are represented in Sp2 as

(re- Scsinaa)cosOG ]
rp2(Sa, Oc ) = (re - Sasinac)sinSa (13)

-- SG COS _G

where 8G and SG (fig. 9(a)) are the surface coordinates (the Gausian coordinates); aG is

the blade angle; rc is the radius of the head-cutter that is measured at the tip of the blade.

Parameters rc and R_2 are related as follows

PW
rc = R_2 + -- (14)

2

The upper and lower signs in (14) correspond to the gear concave and convex sides.

Equations (13) may represent both generating cones, if we will use the rule of signs in

equation (14), and consider that ac > 0 and aa < 0 correspond to the gear concave and

convex sides, respectively.

The unit normal to the gear generating surface is represented bv the equations

rip2 -

Equations (14) and (15) yield

0rv2 0rp_ (15)Np2 Np_ = _ x
INp2[ ' OOv OSG

9



-- COS OCG COS 8G ]
n_(Oa) = - cosac sin 8c

sin ac

Algorithm for Derivation of Gear Tooth Surfaces

The derivation of gear tooth surface E2 is based on the following procedure:

Step 1:

Initially we derive the family of generating surfaces in 5'2 using the matrix equation

(16)

r2(SG, 8G, Cn) = M2nrt_(SG, 0G) (17)
= M2_2(¢2)Ma2,,_M,_(¢_)M_nrn(SG, OG)

where ¢2 and ¢c= are related by equation (6).

Step 2:

Then, we derive the equation of meshing between the gear and the generating surface

that we represent in the form

n(_n). v_n2) = f(SG, OG,¢c2) = 0 (18)

where n_ =) is the unit normal to the generating surface Ep2, and rip22) is the relative (sliding)

velocity. The scaler product (nCp2). v(p22)) may be represented in any coordinate system. In

our derivations, the scaler product is represented in Sin.

Note: we may represent as welt the equation of meshing in the form

N_,_. v_ = 0 (19)

where N (_) is the normal but not the unit normal to the generating surface.

Equations (17) and (18), considered simultaneously, represent the gear tooth surface as

the envelope to the family (17) of generating surfaces.

10



Derivation of Family of Surfaces (17)

Vector function rp2(Sa, 8G) has been already represented by (13).

(17) are represented as follows (see figs. 6,7, and 8)

Matrices in equation

M2d2 --

Md2m --

M,rn, e2

1 0 0 0

0 cos ¢2 sin¢2 0

0 -sin¢2 cos ¢2 0

0 0 0 1

cos 72 0 sin-r2 0

0 1 0 0

-sin72 0 cos 72 0

0 0 0 1

cosec2 -sin¢c_ 0 0

sin ¢c2 cos ¢c_ 0 0

0 0 1 0

0 0 0 1

(20)

(21)

(22)

Equations (17) and (20)-(22) represent the family of generating surfaces in form of three

parameters. The relation between these parameters is represented by the equation of meshing

(18).

Derivation of Equation of Meshing

We represent in coordinate system Sm the unit normal n_ _) to the generating surface

using the following matrix equation

n(p2)/o (23)

Here:

Vector function n_2 (Oc) is represented by equation (16). Matrix L is the 3 × 3 submatrix

of the 4 x 4 matrix M. After derivations, we obtain

- cos aG cos(0c + ]nm(OG, ¢c2) = cos_G sin(OG + ¢c2) J (24)sin c_c

11



As a reminder, the variables ¢2and ¢n are related by equation (6).

The derivation of the relative velocity v(_2) is basedon the following considerations

Step 1:

We represent vector v(m2) as follows

where

v(_2) = (w(m_) -- ¢_)) × r(mc2) (25)

w_ 2) = [0 0 _(n)]T (26)

w_) = L,,,2_ (2) = L,,,d2Ld22w(2) = [w(2) cos _'2 0 w(2)sin 3,2]T (27)

The rel.ation between w (_) and _(2) may be obtained by differentiating equation (6) that

yields

w(2) _ N1 w (c2) - 2a( .¢c2 )
_(C2)

N2 sin _1 sm _/1 sin "Y1
(28)

4 Machine-Tool Settings for Pinion Generation

Introduction

Henceforth, we will consider methods for the pinion generation that provide two types of

the path of contact : across the surface and along the surface. The developed machine-tool

settings will be determined: (i) for the imaginary process for generation based on application

of two rigidly connected generating surfaces (see figs. 3 and 4), and (ii) machine-tool settings

represented in terms of the Gleason Works terminology.

12



Coordinate Systems Applied for Pinion Generation

Movable coordinate systems Sol and $1 are rigidly connected to the cradle of the cutting

machine and the pinion, respectively (fig. 10). An auxiliary coordinate system Spl is rigidly

connected to the head-cutter and the cradle. Axes of coordinate systems Sol and Sp_ have

the same orientation. Fixed coordinate systems S,_

and Sdl are rigidly connected to the cutting machine. The pinion and the cradle perform

rotation about axes x_ and z,,, respectively. During the generation, the cradle and the

pinion are rotated uniformly, and the angles of rotation are related as follows :

¢c, = ¢1 sin "_1 (29)

where _/1 is the pinion pitch angle.

Pinion Machine-Tool Settings

The pinion machine-tool settings for the imaginary process of generation are determined

by the following set of parameters (fig. 10): 71, S_1 and ql- The machine-tool settings for the

real process of generation may be determined by turning of systems $1, Sdl, Sp_ and So: at

180 ° about the xm-axis. Fig. 11 shows the installment of the pinion on the cutting machine

and its rotation during the process for generation. Fig. 12(a) shows the initial installment of

the head-cutter and cradle and fig. 12(b) shows the rotation of the cradle during the process

for generation (fig. 12(b)).

5 Equations of Pinion Tooth Surfaces

Orientation of Bearing Contact Across Surface

13



The mentionedtype of bearing contact is provided by application of two rigidly connected

circular cones that generate the gear and pinion tooth surface, respectively (fig. 4). Fig. 13

shows the cross sections of the surfaces of the pinion and gear heaA-cutters in plane z,,, = 0

when the cradle is at the initial position that is determined with ¢c_ = 0, and the coordinate

systems Sc, and S,_ coincide each with other (fig. 10(b)).

Fig. 14 shows the profiles of the cutter blades used for the generation of the pinion

concave side and convex side surfaces, respectively. Fig. 15 shows the generating surface

(cone) in system Svl. The derivation of the generated pinion tooth surface is based on the

following procedure.

Step 1:

The head-cutter generating surface is represented in Sp, as

(r_ - Sp sin av) cos 0p

(r_ - Spsin ap) sin Op (30)
rp_ -- --Sp cos o_p

1

Here, r_ is the point radius (fig. 14), ap is the blade angle. The sign of ap should be

considered as positive and negative when the pinion convex and concave tooth surfaces are

generated, respectively. Parameters 0p and Sp are the head-cutter surface parameters.

The unit normal of the head-cutter generating surface is represented in Sp_ as

N_ 0rp: c9r_I

nv,- rN--vwl ; Np_--_--_p x-_s p

Equations (30) and (31) yield

Step 2:

npl =

--CO$Oip COS _p

-cosap sin Op

sin a v

14
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(32)



The family of head-cuttergeneratingsurfacesis representedin $1 by the matrix equation

(33)

Here,

Mid, =

1 0 0 0]

0 cos¢l sin¢l 0

0 -sine1 cost1 0

0 0 0 1

Mdl rn -"

cos 71 0 sin% 0

0 1 0 0

-sin71 0 cos 71 0

0 0 0 1

cosCc_ -sinCe, 0 0

sin ¢q cos ¢_ 0 0
0 0 1 0

0 0 0 1

Mclpl --

1 0 0 S_,cosql

0 1 0 S_lsinql

0 0 1 0

0 0 0 1

Step 3:

The equation of meshing is represented in system Sm as

(34)

(35)

(36)

(37)

nm • v_ _I)= 0 (38)

Here,

nzrn

V_ 1') = _o_ '1) X r_

(39)

(40)

where

15



r_tl = Mine1 Mc, m rm

-Sp sin% cos(Op + ¢cl) + to, c°s(Op + ¢cl) + S,1 cos(¢c_ + qt) ]
= -Spsinapsin(Op+¢_l)+r@sin(ap+¢_,)+ S_lsin(¢c_ +ql)

Sp cos otp

Using the designations

(41)

we obtain

_ cos(O,+ ¢,,) + s,1 _os(¢,, + ql) ],
to, sin(O p + 6c,) + S_1 sin(¢_, + ql) J

(42)

ry?l
-Sp sin % cos(0p + ¢c,) + B, ]

= -Sp sin % sin(0p + ¢c,) + B_ ]
-Sp COS Qp

Then, we obtain that (since w_ = wl sin 71)

(43)

(44)

[ 0 ]v_ 1') = w_ _1) x r_ = Sp cos % cos 71

-Sp sin ap sin(0p + ¢_, ) cos 71 + B2 cos 7a

We have assumed not loosing the generality of the approach that [wl[ = 1.

The equation of meshing yields

(45)

numS p cos % cos 71 - n_Sp sin % sin(0p + 0¢, ) cos 71 + n,_B2 cos 71 = 0 (46)

or

Step 4:

s,(0_, ¢o,) =
-nzm B2

nu,_ cos % - n,,_ sin ap sin(Op + ¢bc_)
(47)

16



The envelope to the family of generating surfaces may be represented in two parameter

form if we eliminate in equation (33) parameter S T using equation (47).

Orientation of Bearing Contact in Longitudinal Direction

The mentioned orientation of the bearing contact can be achieved by application of

generating surfaces shown in fig. 3. The profiles of the blades of the head-cutter used for

the generation of the pinion are shown in fig. 16.

The derivation of the equations of the pinion tooth surface generated by a head-cutter

with circular arc blades is based on the following procedure:

Step 1:

The coordinates of the center of the blade circular arc for the concave side are represented

by the following equations (fig. 16) :

0oC1 = OM1 + MIC1 (48)

where OM1 = re1, _/1C1 -- Ra

Equation (48) yields the following equations for the coordinates of center C1

x c,)
y(oC_)

z_Cl )

= OoCl " io = rc, - Rl cos ap ]

= 0oC1 "jo = 0

= 00C1 • ko = -R1 sin ap

(49)

Step 2:

The position vector of a current point of the circular arc is represented in So by the

equation (fig.16)

OoA = OoC1 -_-C1A = OoC1 + Rlno (50)

17



where

no = [cosA1 0 -sinA,] T (51)

is the unit normal to the circular arc that is represented in So.

Step 3:

The head-cutter surface is a surface of revolution that is generated while the circular

arc is rotated about the axis of the head cutter. The head-cutter surface is represented in

coordinate system Sp_ as follows

Here

(c_) + Rlnp, (52)rpl _- rpl

r(C,) = LT,1or_ c_)
P_

is the position vector of point Cl that is represented in $1

(53)

npl = L_lono (54)

is the unit normal to the generating surface that is represented in Spl

Step 4:

cosOp -sin0p 0 ]
Lp_o = sin0 F cos0p 0

0 0 1

(55)

For the following derivations, we represent the surface of the head-cutter in coordinate

system Sm (fig. lO(b)). We may use for this purpose the following vector equation

rm = Oc, Op_ + r._ + Rlnm (56)

18



Here (fig. lO(b))

Oe1Om = Srl[COS ql sinql 0] T

r(Cl) = Lmcl rm77l

nm= LinG1 nm

cosdc -sin_c 0 ]
L_c, = sin _bc cos _b_ 0

0 0 1

(57)

(58)

(59)

(6o)

Step 5:

The pinion tooth surface is represented in 5'1 as the envelope to the family of the head-

cutter surfaces that is generated in coordinate system $1. The equation of the family of

surfaces is as follows :

rx(Ai,0p, _c_)= M:a(_b:)Ma:,_rm(Al,Om _¢1) (61)

As a reminder, angles O_, and bl, angles of rotation of the cradle and the pinion, are

related by the equation

_¢, = _I sin 3'1 (62)

Step 6:

The envelope to the family of surfaces is determined by equation (61) and the equation

of meshing that we represent as follows

(lp,) (63)Vm " nm -- 0

The final expression of the equation of meshing is based on the following derivations.

The sliding velocity is determined as

19



-('P') "('P_) x r._ (w_)- w_')) x M._p, rp, = w,,,
Vrn --" _rn ""

Equations (63) and (64) yield

(64)

where

( Ip! ,C1 )
(w_ px) x .,_-(c')_ •n,_. = v,_ (65)

r(C_) = L,_p, rp_ (66)rn

and v_ pl'c') designates the relative velocity for point C1.

Step 7:

The surface unit normal n,_ is a vector function of three variables (A1,0, ¢c). We may

simplify the vector function n,_(A1, 0, ¢c) using the following considerations :

(1) Equations

and

(lp_) (67)v m "nm = 0

=0 (68)

yield that the relative velocities determined at the point of tangency of the head-cutter and

the pinion, and at the center of the circular arc are collinear. Taking this into account, we

may represent the unit normal n,_ to the surface of the head-cutter by the following equation

1"m X V(mlpI'C1)= (69)

2O



where r,,, is a unit vector of the tangent to the Op coordinate line on the head-cutter

surface, that is represented in S,_ system. The unit vector r,_ is represented by the following

equation

r,_(ap) = L,_plLp, ojo = L,,r, 7-rl (70)

Vector jo is perpendicular to the plane (Xo, Zo) of the circular arc (fig. 16). A point of

the circular arc traces out in Spl a circle, and the unit tangent rp, is represented as

"rp_ = Lploj o = cos 0p (7I)
0

The advantage of application of equation (69) is that we may represent the surface unit

normal by the vector function n_(0_,¢c_). Then, the equation of meshing will yield the

relation

v_p"c_)- n_ = f(Op,¢c:)=0

that is free of parameter At.

Angle A1 can be obtained from the equation

(72)

cosA1 = rm .nm (73)

Note : Similarly, we may derive the equations of the convex side of the pinion tooth

surface. Center C2 of the circular arc (fig. 16) is represented in So by the equations

z(c2) + R2 cos ap )o _ To2

- (c2)yo = 0

_(c2) = -R2 sinap_O

(74)
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6 Computerized Simulation of Meshing and Contact

The goals of this investigation are : (i) the determination of paths of contact for aligned

and misaligned gear drives, (ii) and the determination of influence of misalignment on the

transmission errors and the shift of the bearing contact.

Conditions of Continuous Tangency

We set up three coordinate systems Sh, $1, $2 (fig. 17) that are rigidly connected to

the frame, the pinion and the gear; ¢1' and ¢2' are the angles of rotation of the pinion

and the gear when they are in mesh; H, V, Q 6' are the parameters used to simulate the

misalignments that represent.

The contact of the tooth surfaces is localized and they are in tangency at every instant

at a point. The simulation of meshing is based on the condition of continuous tangency of

pinion-gear tooth surfaces E1 and E2, that are represented in coordinate system Sh as follows

n_'(0., _o,,¢'1)= n_)(0o,¢o_,_;)

(75)

(76)

where In(hUl= In(h211= X; (0,, ¢=1),(0c, ¢=_) are the surface parameters of the pinion and

the gear, respectively; ¢'1 ¢_ are the angles of rotation of the pinion and the gear being in

mesh.

Equations (75) and (76) represent a system of five nonlinear equations in six unknowns

represented as

where fi E C'

/_(o,,¢ol,¢_,oc,¢_, ¢;) = o (i = 1,5) (77)
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One of the unknownsin equation system (77), say ¢_, is chosenas the input one. The

continuoussolution of theseequationsis an iterative processthat is basedon the following

procedure.

Using the first guess,weconsiderthat a set of parametersdesignatedas

p(o)= (O{po),_(o)_ci,(¢_)(°),O(°)a,_c__(°),(¢_)(°)) (78)

satisfiesequation system (77).We assume as well,that we have

O(I,,f_,f3, f.,IS)
As = 0(Tp, ¢'_,, b--_G,¢'-_: ¢--_) # 0 (79)

Then, in accordance _o the Theorem of Implicit Function System Existence [15], equation

system (77) can be solved in the neighborhood of P(°) by functions

' ' '¢5(¢,) (80)0F(¢1),¢c,(¢'1),0G(¢1), ¢c_(¢1), ' '

The solution of these nonlinear simultaneous equations is found by numerical methods.

The path of contact on the pinion tooth surface may be represented by the following

expressions

u(%,¢.), %(¢',), ¢.(¢',)

Similarly, the path of contact on surface _2 may be represented by

(81)

r_(0c,¢o,), 0c(¢'1), ¢o,(¢'1)

The transmission errors caused by misalignment are determined by the equation

gl . i
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Derivation of Equation System (80)

We use for derivation matrix equations (84)-(87), equations of surfaces Ep and _a, and

the surface unit normals.

= Mhl(¢_)rl(Op, ¢¢_)
1 0 0

0 cos$_ sin$_

0 --sin¢_ cos_

0 0 0

H

0

0

1

r_(O_,¢o,)
(84)

= Mh2(¢_)r2(Oa, ¢c2)

cos(3' + 6') o - sin(3' + s')
0 1 0

sin(3' + a') 0 cos(3' + 6')
0 0 0

Q
-V

0

1

1 0 0

0 cos¢_ -sin¢_

0 sin ¢_ cos ¢_

0 0 0

0

0
0 r2(Oa, ¢_)
1

(85)

nO)tO ¢c, ¢;)=h k P_ , 1 0 0 ]
0 cos¢_ sine{

0 -sin¢_ cos¢_

n,(Op,¢o,) (86)

n{h2)(Oa, ¢,_, d,_)

i o ][1o o]= 0 1 0 , 0 cos¢_ -sin¢_ n2(0a,¢,_)
sin(3'+_') 0 cos(3'+8) 0 sin¢_ cos¢_

(87)

Here; 71 is the pitch angle of the pinion, 3'2 = 7 - 3'1, 7 is the angle formed by the

pinion-gear axes of rotation. Usually, 7 = 90°.

Be advised that in the case when the generating surface is a cone, the unit normal is

represented by a vector function of one variable (see Section 3)

Bearing Contact

Theoretically, the pinion and gear tooth surfaces are in point contact. Under the load,

the contact is spread over an elliptical area. The determination of dimensions and orientation
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of the instantaneouscontact requires the knowledgeof principal curvatures and directions

of the contacting surfaces. The solution to this problem is substantially simplified due to

representationof the curvaturesof the generatedsurfaceby the curvatures of the generating

surfaceand the parametersof motion [15].

For the casewhen the pinion generatingsurfaceis a cone,the principal curvaturesof the

pinion generatingsurfaceare representedas

k_ I) = 0

k_1_ = cosa,/(ro,- S, sina,) (88)

The principal directions on the pinion generating cone are

e_ 1) = [-sin0p cos0_ 0] r

e_') = [sina,,cos O, sincb,sinO. _ cosap]T (89)

For the case when the pinion generating surface is a surface of revolution, the principal

curvatures of the pinion generating surface are represented as

k 'l= l/R,
k_,) (90)= cos _,I(Xo + R1 •cosA,)

The principal directions on the pinion generating cone are

e_ a) = [-sin0, cos0, 01T (91)
e_ 1) = [sinA1 cos0p sinAx sin0_ - cosAx] T

Similarly, when the generating surface of the gear is also a cone, we have that the principal

curvatures of the gear generating surface are

k_ 2) = 0

k_2) = cosaa/(r_ - Sasinaa)

The principal directions on the gear generating surface are

(92)

25



e_2) = [-sinOa cosOa O]T (93)
e_2) = [sin ac cos 8c sin aa sin 0c -- cos a_] T

The principal directions are represented in systems Spl for the pinion case, and S_ for

the gear case, respectively.

Because the generating and generated surfaces are in line contact, their principal curva-

tures and directions are related by the following three equations [15]

2tlst23

kq -- k s -- 2t13t23 (94)
t33 sin2a

kq q-ks -- k l-[-kh+ t23 "[- t223

Here, kl, kh are the principal curvatures of the generating surface; ks, kq are the principal

curvatures of the generated surface; a is the angle between the principal directions of the

generating and generated surfaces (fig. 18(a)). The expression for t13, t23, and t33 are

represented in [15].

The determination of the dimensions of the contact ellipse and its orientation is based

on application of following equations

tan 2r = g2 sin O_(12) (95)
gl -- 92 COS (:_(12)

where

gl -- k_') -- k_2)

_(12) __ Cos-l(e_l)e_2))
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k_" and k_ ') are the principal curvatures of the pinion surface, k_ 2) and k_ 2)

principal curvatures of the gear surface.

The major axis and minor axis of the contact ellipse may be determined as

are the

2a=2_/-_, 2b=2_F_ (96)

where 6 is the elastic approach obtained from experimental data; A and B are determined

by

A = lrl.OJ k(2)_L-_. - - (g_ - 2g,g_cos2_(';) + 9_)_]
B I rk(1) k(2) 2 ' (97)= _L_. - + (g[ - 2g,g2cos2_('_1+ g_)_]

and

kl'' +

7 Numerical Examples

Introduction

The purpose of the numerical examples is: (i) to determine the influence of errors of

alignment on the transmission errors and the shift of the bearing contact, and (ii) to prove

that the predesigned parabolic function is able to absorb the transmission errors that are

caused by the errors of alignment. We emphasize that the determination of transmission

errors caused by misalignment is based on the following approach:

(1) We consider an imaginary process for generation when an ideal transmission func-

tion is provided. Then, using TCA, we simulate errors of alignment and determine the

transmission errors that are caused by the respective error of alignment.
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(2) On the second stage of investigation, we consider again the imaginary method of

generation that has been provided in the previous section. We remind that this method

of generation provides for each cycle of meshing a transmission function and a predesigned

parabolic function as the sum of the ideal linear function and a predesigned parabolic func-

tion. Using the TCA, we consider the meshing and contact of the gear misaligned gear drive

that allows to determine: (i) the resulting function of transmission errors as the sum of the

predesigned parabolic function and the function of errors that is caused by misalignment.

We are also able to determine the shift of the bearing contact caused by misalignment by

applying the TCA method.

The simulation of meshing and contact has been accomplished for both methods of gen-

eration described above that provide the longitudinal bearing contact, and the across the

surface bearing contact. The results of computation confirmed that the bearing contact is

stable, and the predesigned parabolic function is able indeed to absorb the almost linear

functions of transmission errors caused by the respective errors of alignment.

Input Data:

The input data is represented in Tables 1-5.

Output Data:

The results of computation are represented for two cases of generation: (i) by application

of a pinion head-cutter with straight blades (figs. 19-42); (ii) by application of a pinion

head-cutter with circular arc blades (figs. 43-66). It is assumed that in both cases the gear

is generated by a head-cutter with straight blades. In each case, four sets of figures represent

the respective influence of H, Q, V, ,5', which indicate the axial displacement of the pinion,

the gear, the offset, and the change of the shaft angle, respectively. Alignment errors are

given in millimeters, 6' is given in arc minutes.
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Table 1: Blank Data

Pinion Gear
Number of teeth 11 41
Shaft angle 90°

Mean spiral angle 35 ° 35 °

Hand of spiral LF RH

Outer cone distance (mm) 90.07

Face width (mm) 27.03

Whole depth (mm) 10.0 10.0

Pitch angle 15°1 ' 74o59 '

Root angle 15°1 ' 74°59 '

Face angle 15°1 ' 74o59 '

In each set of figures, we represent:

(i) The initial influence of misalignment on the transmission errors, when the predesigned

parabolic function has not been applied. The transmission function caused by misalignment

is almost a linear function (see, for instance, figs. 19 and 20).

(ii) The interaction of the linear function of transmission errors with the predesigned

parabolic function. The results of TCA show that the obtained resulting function is indeed

a parabolic function (see, for instance, figs. 21 and 23).

(iii) The location of bearing contact for a misaligned gear drive (see, for instance, figs.

23 and 24).

Similar sets of figures are represented for other kinds of misalignment.
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Table 2: Gear Cutter Specification

Blade angle 20 °

Cutter diameter (mm) 152.4

Point w_dth (mm) 2.79

Table 3: Gear Machine Tool Settings

Radial setting (mm) 70.53744

Cradle angle -62014 '

Machine center to back (mm) 0

Sliding base (mm) 0

Blank offset (mm) 0

Machine root angle 74o59 '

Table 4: Pinion Machine Tool Settings for Generation by a Cone

Convex Concave

Cutter blade angle 20 ° 20 °

Cutter point radius (mm) 71.7222 80.4876

Radial setting (mm) 68.04991 73.31925

Cradle angle -57o50 ' -66o12 '

Machine center to back (mm) 0 0

Sliding base (mm) 0 0

Blank offset (mm) 0 0

Machine root angle 15°1 ' 15°1 '
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Table 5: Pinion Machine Tool Settings for Generation by Head-Cutter with circular Arc
Blades

Convex Concave
Cutter point radius (mm) 71.7222 80.4876
Radial setting (mm) 68.04991 73.31925

Cradle angle -57°50 ' -66°12 '

Machine center to back (mm) 0 0

Sliding base (nun) 0 0

Blank offset (ram) 0 0

Machine root angle 15°1 ' 15°1 '

8 Conclusion

Extension of application of a CNC machine for generation of spiral bevel gears with the fol-

lowing features has been discussed: (i) The gears are face-milled, the tooth depth is uniform.

(ii) Two types of bearing contact are provided directed (a) in the longitudinal direction, and

(b) in the direction across the surface. (iii) A predesigned parabolic function of transmission

errors is provided for the absorption of transmission errors caused by misalignment. (iv)

Equations of generated pinion-gear tooth surfaces have been derived. (v) TCA computer

program has been developed and the influence of misalignment on the transmission errors

and the shift of the bearing contact has been investigated. The computations that were

performed confirmed the stability of the bearing contact, the low level of transmission errors

and the favorable shape of the function of transmission errors, of a parabolic type, for a

misaligned gear drive.
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9 Directions for TCA Program Use

There are two TCA programs for two different cases. One program is BEVEL.FOR, for the

case that both the pinion and the gear generating surfaces are cone surfaces. The other

program is RBEVEL.FOR, for the case that the pinion generating surface is a surface of

revolution, the gear generating surface is a cone surface. For both programs the input data

files and the output data files are almost the same, except that there is an additional arc

radius, RHO, in the input data files for program RBEVEL.FOR.

Input data

1. Control codes

(a) For right hand gear JCH=I, for left hand gear JCH=2

(b) TL1 and TL2 are numbers of extra point on the contact path which should not be

larger that 2

(c) MM is the number of contact points

2. Blank data

TN1--Pinion number of teeth

TN2--Gear number of teeth

C--Shaft offset (zero for spiral bevel gear) (mm)

TW--Face width of gear (mm)

GAMMA--Shaft angle (degree)
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MCD--Mean conedistance(mm)

RGMA1--Pinion root coneangle (degree)

BlmPinion spiral angle (degree)

B2--Gear spiral angle (degree)

RGMA2--Gear root coneangle (degree)

FGMA2--Gear faceconeangle (degree)

PGMA2--Gear pitch coneangle (degree)

ADD2--Gear mean addendum(mm)

DED2--Gear meandedendum(mm)

WD--Whole depth (mm)

CC--Clearance (ram)

DEL--Elastic approach(ram)

3. Gearcutter specification

RU2--Gear nominal cutter radius (mm)

PW2--Point width of gearcutter (mm)

ALP2--Blade angleof gear cutter (degree)

4. Gearmachine-toolsettings

XG2--Machine center to back (mm)

GAMA2--Gear machineroot angle (degree)

XB2--Sliding base(ram)

33



EM2--Blank offset (ram)

4. Pinion machine-toolsettings

RCF--Point radius (mm)

XGlmMachine center to back (mm)

XBl--Sliding base(mm)

EM1--Blank offset (mm)

GAMA1--Pinion machineroot angle (degree)

A1P1--Blade angleof pinion cutter (degree)

6. Misalignments

A--Constant coefficientof the predesignedparabolic function

H--Misalignment along the pinion axis (mm)

Q--Misalignment along the gear axis (mm)

V--Misalignment of axisoffset (mm)

_'--Misalignment of shaft angle (arc min.)

Input data files

Files 70 and 60 are for program RBEVEL.FOR, file 70 for the convex side, file 60 for

the concaveside. These two files must be read together. Files 90 and 80 are for program

BEVEL.FOR, file 90 for the convexside, file 80 for the concaveside. These two files must

be read together.

Output data files
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File 9 is anoverall output data file. All the input and output information is stored in this

file. File 91 stores the information of transmissionerrors for the convexside; file 93 stores

the information of transmissionerrorsfor the concaveside. File 92 storesthe information of

contact path and contact ellipsefor the convexside; file 94 storesthe information of contact

path and contact ellipse for the concaveside.
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Figure 1: Representation of axes of rotation of spiral bevel gears in coordinate system S,_

38



_2

Figure 2: Transmission function _b2(_bl) with a parabolic function of transmission errors
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Contact lines L_2

Figure 3: Generating surfaces E¢ and Et that provide contact path along the surface
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Lc2

Figure 4: Generating surfaces Zc and Zt that provide a contact path across the surface
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Figure 5: Generating blades and cones
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Figure 6: Installment and orientation of coordinate systems S.., Sc2, S_2, and $2
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Figure 7: Coordinate systems S._, Sc2, and Sp2 applied for gear generation
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Figure 8: Machine-tool settings for gear generation
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Figure 9: Gear generating surface and its straight line blade profiles
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Figure 10: Coordinate systems S_, Spl, Sal and Sc_ applied for pinion generation
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Figure 11: Coordinate systems S._, S_1 and $1 applied for pinion generation
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Figure 12: For derivation of relation between imaginary and real pinion machine-tool settings
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Figure 13: Profiles of pinion and gear head-cutters represented in plane Z_ = 0
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Figure 14: Profiles of straight-line pinion blades
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Figure 1S: For derivation of pinion generating cone surface

52



..,,0

Figure 16: Profiles of pinion circular-arc blades
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Figure 17: Coordinate systems applied for simulation of meshing
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Figure 18: Principal directions and contact ellipse
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Figure 22: Resulting transmission errors: H=0.01mm (Concave side)
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Figure 24: Shift of bearing contact: H=0.01mm (Concave side)
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Figure 26: Transmission errors: Q=0.01mm (Concave side)
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Figure 28: Resulting transmission errors: Q=0.01mm (Concave side)
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Figure 30: Shift of bearing contact: Q=0.01mm (Concave side)
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Figure 33: Resulting transmission errors: V=0.01mm (Convex side)
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Figure 51: Resulting transmission errors: Q--0.01mm (Convex side)
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Figure 52: Resulting transmission errors: Q=0.01mm (Concave side)
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Figure 53: Shift of bearing contact: Q=0.01mm (Convex side)
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Figure 54: Shift of bearing contact: Q=0.01mm (Concave side)
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Figure 55: Transmission errors: V=0.01mm (Convex side)
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Figure 56: Transmission errors: V=0.01mm (Concave side)
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Figure 57: Resulting transmission errors: V-0.01mm (Convex side)
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Figure 58: Resulting transmission errors: V=0.01mm (Concave side)
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Figure 59: Shift of bearing contact: V=0.01mm (Convex side)

'_0 I I I

_, 0 5 ]0 15 20 25 30

Tooth length (mm)

Figure 60: Shift of bearing contact: V=0.01mm (Concave side)
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Figure 61: Transmission errors: 6'=1 arc rain. (Convex side)
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Figure 62: Transmission errors: 6'=1 arc rain. (Concave side)
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Figure 63: Resulting transmission errors: _'=1 arc rain. (Convex side)
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Figure 64: Resulting transmission errors: _'=1 arc min. (Concave side)
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Figure 65: Shift of bearing contact: _'=1 arc min. (Convex side)
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Figure 66: Shift of bearing contact: 6'=1 arc min. (Concave side)
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